抗感染药学杂志

期刊简介

               《抗感染药学》为季刊, 季末 25 日出版, 大 16 开, 80页, 邮发代号: 28-194。单价:9.80/册。国内外公发行。《抗感染药学》是江苏省卫生厅主管、苏州市第五人民医院主办的抗感染药学学术期刊。中国标准连续出版物号:ISSN 1672-7878/CN  32-1726R。《抗感染药学》主要刊登药学与抗感染药学领域的基础理论、科研设计、生产工艺、临床应用、不良反应、国内外的药学进展和抗感染药学的理论与实践等方面的学术论文。 办刊宗旨:     创新、存真、求精、服务。普及与提高相结合, 以提高为主, 理论与实践相结合, 以实践为主。着重报道具有综合性、基础性、实用性的科技成果和先进经验。 本刊特点: 集科学性、先进性、实用性、知识性、可读性为一体, 重在实用、兼顾提高。 1   征稿范围       国内外抗感染药物药学进展、科研成果与理论、中药与天然药物、生化药物、药物分析、药物制剂、药理毒理; 抗感染药物临床应用、相互作用、合理用药、不良反应、药物代谢动力学; 抗感染药物经济学、药事管理、新药介绍、药学信息。 2  栏目设置   综述与论坛   报道抗感染药物的研究热点和前沿领域进行总结、评述、并结合作者在本领域的工作发表见解。   实验研究   报道抗感染药物各具有原创性的研究成果。   内容可涉及中、西药的合成、制剂、药理、毒理、临床药物试验、药物敏感性实验, 药物质量分析、鉴定、含量测定及改进方法的探讨等。   研究生论文   报道研究生在读时各类药物及抗感染药物具有原创性的阶段性的研究成果。   药物与临床   报道抗感染类药物应用于各科疾病的药物疗效评价。   合理用药   报道对临床抗感染用药的合理性、配伍问题分析; 药物使用时的稳定性问题分析; 临床医师和临床药师讨论处方的合理性问题等。   药物不良反应   报道按照药物说明书使用后出现的个体反应, 探讨分析抗感染药物对各组织器官的不良反应等。  药物经济学   报道抗感染药物在临床各科的治疗中, 药物产生疗效时的费用的分析等。  经验交流   报道工作中的新发现, 经验改进等。  药事管理   报道药学领域中的科学管理, 药事法规等                

医学论文写作中Cox比例风险模型统计分析工具详解

时间:2024-03-22 09:55:13

Cox比例风险模型,又称Cox回归模型,是由英国统计学家D.R.Cox在1972年提出的一种半参数回归模型。该模型以生存结局和生存时间为应变量,可同时分析众多因素对生存期的影响,能分析带有截尾生存时间的资料,且不要求估计资料的生存分布类型。由于其优良的性质,该模型自问世以来,在医学随访研究中得到广泛的应用,是迄今生存分析中应用最多的多因素分析方法。

Cox比例风险模型基于比例风险假设,即任意两个个体的风险函数之比不随时间变化,或者说风险比保持恒定。该模型中的预测变量(或称为解释变量)可以是连续性变量,也可以是二分类或分类变量。

此外,Cox比例风险模型可用于估计生存函数和风险函数,并通过计算风险比(hazard ratio)来评估各因素对生存时间的影响程度。在实际应用中,该模型还可用于比较不同治疗方法的疗效差异、预测患者的生存时间等。


当研究某种疾病患者的生存时间及其与各种影响因素的关系时,Cox比例风险模型是一个常用的统计分析工具。以下是一个简化的实例来说明Cox比例风险模型的应用。

研究目的:评估某种新药物对肺癌患者生存时间的影响,同时考虑其他潜在的影响因素,如患者的年龄、性别和癌症分期。

数据收集:收集一组肺癌患者的数据,包括患者的生存时间(从确诊到死亡或研究结束的时间)、是否接受新药物治疗(是/否)、年龄、性别和癌症分期等信息。

Cox比例风险模型构建:

  1. 因变量:生存时间(通常表示为“时间”)和生存状态(通常表示为“状态”,其中1表示事件发生,即死亡;0表示被删失,即研究结束时患者仍存活或失访)。

  2. 自变量:

    • 治疗组别(接受新药物治疗 vs. 未接受新药物治疗)

    • 年龄(连续变量或分类变量)

    • 性别(男性 vs. 女性)

    • 癌症分期(I期、II期、III期、IV期)

  3. 模型假设:Cox比例风险模型假设在任意时间点,接受新药物治疗的患者与未接受新药物治疗的患者的风险比(hazard ratio)是恒定的,即不随时间变化。同样,其他协变量的效应也是比例性的。

  4. 模型拟合与结果解释:使用统计软件(如R、SAS、SPSS等)拟合Cox比例风险模型,并输出各协变量的估计系数、风险比及其95%置信区间。风险比大于1表示该因素增加死亡风险,小于1表示降低死亡风险。例如,如果新药物治疗的估计风险比为0.75(95% CI: 0.60-0.95),则表明接受新药物治疗的患者死亡风险降低了25%(相对于未接受新药物治疗的患者)。

实例分析:
假设我们收集了100名肺癌患者的数据,并使用Cox比例风险模型进行分析。结果显示,新药物治疗、年龄、性别和癌症分期均对生存时间有显著影响。具体来说:

  • 接受新药物治疗的患者的死亡风险降低了30%(风险比=0.70,95% CI: 0.50-0.98)。

  • 年龄每增加10岁,死亡风险增加20%(风险比=1.20,95% CI: 1.05-1.37)。

  • 男性患者的死亡风险是女性患者的1.5倍(风险比=1.50,95% CI: 1.00-2.25)。

  • 癌症分期越高(即病情越严重),死亡风险也越高(例如,IV期患者的死亡风险是I期患者的3倍)。

这些结果有助于我们了解各种因素对肺癌患者生存时间的影响,并为临床决策提供支持。然而,需要注意的是,Cox比例风险模型的假设在实际应用中可能不成立,因此需要进行适当的模型诊断和验证。